Update EStiMo_GUI.py

updated comments
This commit is contained in:
Armita Faghani 2025-05-08 18:05:51 +00:00
parent a97d4e22e6
commit ad77c22a04

View file

@ -30,10 +30,8 @@ import datetime
import ctypes
import scipy
import pywt
# import queue
from cycler import cycler
# from matplotlib.backend_bases import MouseButton
from PyQt5.QtCore import QTimer, Qt
from PyQt5.QtGui import QImage, QPixmap, QIcon, QFont
from PyQt5.QtWidgets import (QMainWindow, QFileDialog, QMessageBox, QCheckBox, QLineEdit, QWidget, QPushButton,
@ -154,19 +152,13 @@ class NeurOneOffline():
eeg_chn = np.arange(0,num_electr,1)
hdr = mne.io.read_raw_brainvision(tmp_path)
# hdr.set_channel_types({'EMGleft': 'emg', 'EOGright': 'eog'})
# hdr.set_montage(mne.channels.read_custom_montage('easycap-M10_63_NO.txt'))
# mrk_fullpath = tmp_path[:-4]+'vmrk'
# eeg_fullpath = tmp_path[:-4]+'eeg' #this two are made by hand instead of function.
#Maybe there is some func for this
# Annotations returns all events - stimA, stimB, stopA, stopB, start of experiment etc... We chose only stim
stim = hdr.annotations.onset[np.logical_or(hdr.annotations.description=="Stimulus/A",
hdr.annotations.description=="Stimulus/B")]
# Separate stimA and stimB
stimA = hdr.annotations.onset[hdr.annotations.description=="Stimulus/A"]
stimB = hdr.annotations.onset[hdr.annotations.description=="Stimulus/B"]
#divide for stim A and B
#stimR = hdr.annotations.onset[hdr.annotations.description=='Response/R 16']
npts = hdr.n_times
nfft = int(hdr.info['sfreq']) # Sampling rate [Hz]
fs = int(hdr.info['sfreq']) # Sampling rate [Hz]
@ -335,8 +327,7 @@ class AppForm(QMainWindow):
10: 7.812 - 15.625 Hz
11: 15.625 - 31.25 Hz
"""
band = band - 9 #weird way, but then call from function works well for particular band
#but works correctly only for this set of features!
band = band - 9
dwt_pw1, dwt_pw2, dwt_pw3, dwt_pw4 = self.dwt[:4]
#sum of squares
dwt_pw1 = np.sum(dwt_pw1**2)
@ -380,8 +371,7 @@ class AppForm(QMainWindow):
'High Gamma FFT Power', 'Spectral entropy', 'Temporal entropy',
'Line length', 'DWT Power 0-4 Hz', 'DWT 4-8 Hz',
'DWT 8-16 Hz', 'DWT 16-31 Hz','Variance','Correlation']
# One last thing to use your new function is to add string with its name
# to the other First_window.py: variable features_names in class First_window
def all_params(self, passed_params = None, restarted=''):
#reads values from TMS_protocol.txt file
@ -562,10 +552,6 @@ class AppForm(QMainWindow):
self.last_sec = ss.filtfilt(A, B, self.last_sec)
self.last_sec = ss.detrend(self.last_sec, axis=1)
# plt.figure()
# plt.plot(self.last_sec[self.included_ch].T)
# plt.plot(eog)
#that's stupid, move channel selection before!!!!!!!!!!!!!
if self.use_regression:
self.last_sec = eye_reg(self.last_sec[self.included_ch], eog)
return self.last_sec
@ -592,9 +578,7 @@ class AppForm(QMainWindow):
self.results[idx] = self.functions[feature](feature)
else:
self.results[idx] = self.functions[feature]()
#Checks how many fields were filled already, so we know what stage are we on
#and where to save the data
x = np.where(self.feature1==None)[0][0]
y = np.where(self.feature1==None)[1][0]
@ -616,9 +600,6 @@ class AppForm(QMainWindow):
print("Calculation of features: {}".format(times1-times))
#if value is not within threshold values then background color is red (salmon), otherwise green
#checks if there is a need to change a color of the background
old_prv_state = self.previous_state.copy()
if not all(np.isnan(self.thr_1)):
if self.results[0]>=self.thr_1[0] and self.results[0]<=self.thr_1[1]:
@ -724,9 +705,7 @@ class AppForm(QMainWindow):
#If there is a need to redraw we do that. draw() option is slower, but more robust
if need_redraw:
self.canvasMap.draw()
#otherwise we can just update the line, or to be precise, I think it just
#draws the line on the old one. In this application it's fine. Faster than previous method.
#I can think about blitting, so it could be even faster...
#otherwise we can just update the line, or to be precise,
else:
for i in range(3):
for j in range(2):
@ -740,8 +719,7 @@ class AppForm(QMainWindow):
def update(self):
"""Updates data, checks if something should be plotted"""
time_start = time.time()
# There were some problems with delay. This way it works, but probably it can be done better
# If the queue with data timer is sped up.
if self.q.qsize()>0:
self.timer.setInterval(int(1*self.speed_general*0.97))
if self.q.qsize()<1 and self.timer.interval()!= int(self.speed_general*1.1):
@ -827,13 +805,6 @@ class AppForm(QMainWindow):
if len(stim)>0:
for ind in stim[::-1]:
size = self.data_len - (od+ind-int(int_from*self.Fs))
# print('size:', size)
# print(len(self.loaded))
# Interpolation - pretty long line, but basically it chooses ranges and
# assign boundary value as a baseline and does that in (I guess) more optimal way than using loops
# self.loaded[:, od+ind-int(int_from*self.Fs):od+ind+int(int_to*self.Fs)] = np.outer(
# self.loaded[:,min(od+ind+int(int_to*self.Fs), 30000-1)], np.ones(min(size, int((int_from+int_to)*self.Fs))))
# this way is even easier...
self.loaded[:, od+ind-int(int_from*self.Fs):od+ind+int(int_to*self.Fs)] = self.loaded[:,min(od+ind+int(int_to*self.Fs), 30000-1)].reshape(-1, 1)
# for i in range(self.loaded.shape[0]):
# self.loaded[i, od+ind-int(int_from*self.Fs):od+ind+int(int_to*self.Fs)] = np.linspace(
@ -861,8 +832,6 @@ class AppForm(QMainWindow):
step9 = time.time()-time_start
# If do_calibration is True and there were trigger recently then stop calibration
# TODO: THAT'S CONDITION REQUIRED FOR STARTING MEASURMENTS. PROBABLY IT WON'T WORK FOR SOME MORE EXTREME SETTINGS
# if self.do_calibration and len(stim_where[stim_where>(self.data_len-max(
# 2000, round(self.Fs*self.time_between_bursts*0.7, -3)))])>0:
if self.do_calibration and len(stim_where[stim_where>(self.data_len-max(2000, self.exp_time+1500))])>0:
@ -876,7 +845,6 @@ class AppForm(QMainWindow):
return 0 #ends run of this function so nothing else happens
step10 = time.time()-time_start
# If set number of stimuli is detected
# doit --> set length of the measurment between bursts
# if self.doit==0 and sum(stim_where>self.data_len-max(
# 2000, round(self.Fs*self.time_between_bursts*0.7, -3)))==10:
print(sum(stim_where>self.data_len-max(2000, self.exp_time+1500)))
@ -900,9 +868,6 @@ class AppForm(QMainWindow):
elif self.doit>0:
print(self.doit)
self.last_stim = stim_where[-1]
# In some situations last stimuli might be already from another train, while
# First 100ms of loaded signal belong to previous one. That is why this exception exists
# EDIT: not sure if it's still needed after other changes I made
if any(np.diff(stim_where[stim_where>self.data_len-max(
2000, round(self.Fs*self.time_between_bursts*1.2, -3))])>1000):
print('UWAGA NA TO')
@ -1015,7 +980,6 @@ class AppForm(QMainWindow):
self.button4.setText("Start calibration")
self.button4.setStyleSheet('')
#par = self.thr_parameter
#Need to clean the figure to prepare is for a different type of plot
for i in range(6):
self.axesMap[i//2,i%2].cla()
@ -1120,8 +1084,7 @@ class AppForm(QMainWindow):
#calculate fft
self.S = abs(np.fft.rfft(self.second_to_analyze))
#this is a bit shady, but should work. check it out if doesn't!
#do dwt only if any features requires it
if any(feature_num in self.used_features for feature_num in [8,9,10,11]):
self.dwt = pywt.wavedec(self.second_to_analyze, 'db1', level=8)
@ -1152,8 +1115,7 @@ class AppForm(QMainWindow):
self.cals = [self.f1_cal, self.f2_cal, self.f3_cal, self.f4_cal, self.f5_cal,
self.f6_cal]
#!!! Temporary, it's wrong but it's overwritten later. It's needed to check if all features are used,
#but there could be more optimal solution. Remove it at some point!
self.thr_1 = [np.min(self.f1_cal)-0.1*np.min(self.f1_cal),
np.max(self.f1_cal)+0.1*np.max(self.f1_cal)]
self.thr_2 = [np.min(self.f2_cal)-0.1*np.min(self.f2_cal),
@ -1245,12 +1207,6 @@ class AppForm(QMainWindow):
tick.tick2line.set_visible(False)
tick.label1.set_visible(False)
tick.label2.set_visible(False)
# for tick in self.axes.yaxis.get_major_ticks():
# tick.tick1line.set_visible(False)
# tick.tick2line.set_visible(False)
# tick.label1.set_visible(False)
# tick.label2.set_visible(False)
self.axes.set_yticks(np.arange(1, (self.num_of_ch)*1.01, 1))
self.axes.set_yticklabels(self.ch_names[::-1])
@ -1304,14 +1260,6 @@ class AppForm(QMainWindow):
self.canvas.draw()
self.canvasMap.draw() #update canvas
#NOT NEEDED
# for i in range(self.num_of_ch):
# self.axbackground = self.canvas.copy_from_bbox(self.axes.bbox)
# texts = []
# for ind,name in enumerate(self.ch_names):
# texts.append(self.axes.text(-0.03,1-(ind+1)/(len(self.ch_names)+1),
# name, transform=self.axes.transAxes, color='r', fontsize=13))
self.button1 = QPushButton("&Settings")
self.button1.setCheckable(False)
@ -1416,8 +1364,3 @@ if __name__ == '__main__':
form = First_window(AppForm) #AppForm()
form.show()
sys.exit(app.exec_())
# cut time different from both sides
# some deafult settings. Maybe remember last configuration?
# EMG and EOG - none, more than one?
# change names to final names